
The XML Enabled Directory
(XED)

Implementation Considerations

Steven Legg
eB2Bcom

steven.legg@eb2bcom.com

Daniel Prager
Deakin University
dan@layabout.net

XED Features

• XML encodings for ASN.1 values
• Robust XML Encoding Rules (RXER)

• XML schema data types referenced
from ASN.1

• Extended Component Matching
• User defined directory attribute

syntaxes
• XML-ized protocols (e.g. XLDAP)

XML as a Transfer Syntax

• BER, GSER are self-contained at all
levels of nesting

• XML namespace declarations are
inherited by nested elements

• Entities and notations are declared in
the DTD and their scope is the entire
document
– parsed and unparsed entities

Namespace
Example

<ns:name1
 xmlns:ns=“http://www.example.com”>
 <ns:name2 ref=“ns:name4”/>
 <ns:name3> ns:name5 </ns:name3>
</ns:name1>

Entities Example

<!DOCTYPE name1 [
 <!ENTITY foo “true”>
 <!ENTITY bar
 SYSTEM “http://www.example.com/bar”>
 <!ATTLIST name1 name2 ENTITY #IMPLIED>
]>
<name1 name2=“bar”> &foo; </name1>

RXER

• draft-legg-xed-rxer-xx.txt
• An ASN.1 abstract value corresponds to

the content of an XML element
– need to provide a root element name

• An RXER encoded LDAP attribute value
is a complete XML document
– root element name is prescribed
– draft-legg-ldap-transfer-xx.txt

RXER Shortcuts

• Vanilla ASN.1 types don’t depend on
namespace declarations
– added for convenience of XML Schema

validation
– must be recognized, but can be ignored

• Comments and processing instructions are
dropped

• DTDs in RXER encodings are discouraged

Embedded XML

• draft-legg-xed-glue-xx.txt
• Values of XML schema types are embedded

in ASN.1 abstract values using AnyType
• Constraint notation nominates the real type
• AnyType is a SEQUENCE with components

for:
– relevant DTD declarations
– inherited namespace declarations
– actual content of an element

AnyType

• AnyType values are self-contained
• AnyType is currently only used for

directory attribute syntaxes
– only apparent in BER and GSER

encodings of directory attribute values
– by default, the LDAP-specific encoding is

equivalent to the RXER encoding

Schema Language Strategies

• Representation dimension
– generated type-specific data structures
– generic abstract value data structures
– generic transfer syntax data structures

• Procedural dimension
– generated type-specific processing routines
– generic processing routines

• with compact, optimized in-memory description of types
• schema checking can be separated from parsing

XML Schema Treatment (1)

• Complications
– Canonical XML

• Whitespace, comments and namespace
prefixes are significant

• need to preserve XML Infoset
– inadequate schema verification

• broken schemas (invalid restrictions)
– non-deterministic schemas

• back-track parsing required

XML Schema Treatment (2)

• Generic transfer syntax data structures
approach is least problematic
– e.g. a realization of XML Infoset
– less efficient in time and space
– don’t have to worry about other transfer

syntaxes in this case
• Binary XML will probably not be schema-based

Component Matching

• Component reference notation is
insufficient for “components” of XML
Schema types
– XML Schema names can use periods
– XML Schema allows qualified names
– embedded ASN.1 values are GSER

encoded

Component Paths (1)

• Component path is a generalization of
component reference
– based on XPath syntax

• uses a different underlying model
• has extensions for component reference

capabilities not expressible by XPath
– supports qualified names
– embedded values are RXER encoded

• draft-legg-xed-matching-00.txt

Component Paths (2)

• A component of an ASN.1 type usually
has a unique component reference
string
– embedded values are not canonical

• A “component” of an XML Schema type
can have many equivalent component
paths
– namespace prefixes are arbitrary

Component Paths (3)

• Component references can usually be
compared as octet strings

• Component paths have to be compared
at the abstract level

• Component paths are represented as
values of AnyType
– ComponentReference is a UTF8String

Path Assertion

• PathAssertion is an alternative to
ComponentAssertion
– uses a ComponentPath instead of a

ComponentReference
• New alternative in ComponentFilter
• RXER encoding is recommended for

ComponentFilters with path assertions

PathAssertion Matching

• Need to be able to access the content
of an XML attribute or element for
comparison

• The context is significant in a
comparison and must also be available

• An XML attribute value can be
compared to element character data

User Defined Attribute
Syntaxes

• XED allows runtime configurable user defined
syntaxes
– ASN.1, XML Schema, RELAX NG or DTD
– draft-legg-xed-schema-xx.txt

• XED framework makes the capability
available through LDAP
– Automatically inherited by XLDAP

• Favours generic processing routines and
generic data structures

XLDAP (1)

• draft-legg-xed-protocols-xx.txt
• DXER applied to LDAP is unappealing

– directory data appears as hexadecimal

• Need to remediate the LDAP ASN.1
specification
– OCTET STRINGs revert to original X.500

definition

XLDAP (2)

• Protocol message and directory data
are uniformly encoded in XML

• Directory attribute values can no longer
have self-contained context

• Namespace differences can be taken
care of with local namespace
declarations

XLDAP (3)

• Notation and unparsed entity
declarations must be collected at the
beginning of the operation encoding
– particularly bothersome in X.500 protocols

• Entity and notation names are not
globally unique
– names may need to be remapped

Conclusion

• draft-legg-xed-roadmap-xx.txt
• XED mailing list: xeddev@adacel.com

– soon to be xeddev@eb2bcom.com

• XED web site: www.xmled.info

